
1. Introduction
Drought is a complex natural disaster with devastating economic and health consequences (Otkin et al., 2015). 
Since 1980, severe droughts have cost the United States (U.S.) at least $249 billion, with an average cost of more 
than $9.6 billion incurred during each drought event (NOAA NCEI, 2022). Drought consequences are particu-
larly severe in the western U.S. (WUS). For instance, direct impacts from the widespread 2021 WUS drought 
cost approximately $8.4 billion and resulted in hundreds of deaths (NOAA NCEI, 2022). This extreme drought 
year also enabled the third largest fire season (June–September) in the WUS since the start of the 1984 satellite 
record, with corresponding costs estimated at $10.6 billion. WUS water and food security are also strongly 
dependent on summer drought, where summer drought events have contributed to anomalously low crop yields 
(Kogan, 1997; Zipper et al., 2016). Irrigation supports food production amidst drought (Zipper et al., 2016), which 
however has come at the cost of unsustainable over-exploitation of surface (Wheeler et al., 2022) and sub-surface 
(Scanlon et al., 2012) reservoirs. The WUS is in a historically significant megadrought, with 2000–2021 being 
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the driest 22-year period since at least 800 (Williams et  al.,  2022). WUS drought frequency is projected to 
increase through 2050 with corresponding projections of increased forest-fire activity (Abatzoglou et al., 2021; 
Strzepek et al., 2010). Given the profound historical consequences, contemporary severity, and future projections 
of droughts in the WUS, it is essential to continually improve drought monitoring and forecasting systems that 
inform policy and management designed to mitigate the consequences of droughts. Therefore, this study is moti-
vated to improve summer drought forecasting abilities in the WUS through predicting drought at a much higher 
spatial resolution (4-km) than existing seasonal drought forecasting frameworks (typically >10-km).

Several drought monitoring systems are used in the U.S. to inform drought response. The National Centers 
for Environmental Information (NCEI) and the Climate Prediction Center (CPC) of the National Oceanic and 
Atmospheric Administration (NOAA) publishes weekly Palmer Drought Severity Index (PDSI) maps for the 
conterminous U.S. (CONUS) by climate divisions (https://www.ncei.noaa.gov/access/monitoring/weekly-palm-
ers/; https://www.cpc.ncep.noaa.gov/products/monitoring_and_data/drought.shtml). NCEI also publishes 
monthly drought maps referred to as the North American Drought Monitor (NADM) which presents drought 
conditions throughout the continent (https://www.ncdc.noaa.gov/temp-and-precip/drought/nadm/maps). NASA's 
North American Land Data Assimilation System (NLDAS) is used to create the NLDAS Drought Monitor which 
publishes weekly agricultural drought maps based on soil moisture simulations from the Mosaic, Noah, and 
Variable Infiltration Capacity (VIC) land surface models (LSMs) on a 1/8° (∼12-km) spatial grid (https://ldas.
gsfc.nasa.gov/nldas/drought-monitor; Xia et al., 2014). Perhaps the most popular means of monitoring drought 
in the U.S. is the U.S. Drought Monitor (USDM) which combines expert opinion with metrological and hydro-
logical data to produce weekly maps of categorical drought severity for the U.S. ranging from abnormally dry 
(i.e., D0) to exceptional drought (i.e., D4) at the county level (Svoboda et al., 2002; https://droughtmonitor.unl.
edu/). The West Wide Drought Tracker (WWDT) uses 4-km observationally based data to monitor drought 
conditions across the WUS dating back to 1895 (Abatzoglou et al., 2017). These operational monitoring systems 
are essential to inform drought management and related decision making; however, they do not explicitly provide 
information about future drought conditions which are essential to early drought warning and proactive planning 
(Fontaine et al., 2014).

Drought forecasts are generally made with dynamical (e.g., AghaKouchak,  2014; Shukla et  al.,  2014; Yoon 
et al., 2012) or statistical (e.g., Brust et al., 2021; Hao et al., 2016; Madadgar & Moradkhani, 2013, 2014; Park 
et al., 2016) model simulations of drought-related variables. Many of these approaches have been reviewed in 
recent literature (Fung et al., 2020; Hao, Yuan, et al., 2017; Prodhan et al., 2022). Dynamical approaches often 
rely on global or regional climate models based on physical processes of the atmosphere, ocean, cryosphere and 
land surface. The dynamical approach is the most advanced tool for drought forecasting. For instance, dynamical 
forecasts from the North American Multimodel Ensemble (NMME) (Kirtman et al., 2014) play an important 
role in probabilistic prediction of drought (Hao, Xia, et al., 2017). However, dynamical modeling methods are 
computationally expensive, are often limited by coarse resolution simulations that require bias correction and 
downscaling, and provide uncertain estimates of precipitation (AghaKouchak, 2014; Hao, Yuan, et al., 2017).

On the other hand, relationships between contemporary drought with future drought have been leveraged to inform 
statistical drought forecasts which are operationally useful but provide relatively little information about physical 
mechanisms of drought evolution. For instance, streamflow anomalies (used to quantify the severity of hydro-
logic drought), soil moisture percentiles (used to quantify the severity of agricultural drought) and the widely 
used PDSI (Palmer, 1965) (used to quantify the severity of meteorological drought) tend to have strong seasonal 
persistence (Dai, 2011; Lakshmi et al., 2004; Madadgar & Moradkhani, 2013, 2014; Szép et al., 2005), allowing 
past and present drought to be used as a predictor of future drought. Winter and spring snowpack, commonly 
referred to as a natural water tower for the western U.S., also plays a critical role in modulating summer drought 
and aridity conditions and provides additional predictive information for summer drought (Abolafia-Rosenzweig 
et  al.,  2022a; Huning & AghaKouchak,  2020; Van Ioon,  2015). Statistical approaches, such as regression or 
machine learning models, are based on empirical relationships depicted in historical climate and drought records 
and are useful due to their ease of implementation, relatively high computational efficiency, and established 
success in providing useful drought forecasts in the U.S. (Brust et al., 2021; Hao et al., 2016) and other regions 
around the globe (AghaKouchak, 2015; Hao et al., 2014; Mathivha et al., 2020; Rhee & Im, 2017). For instance, 
statistical models are capable of forecasting regions where USDM drought classifications are likely to intensify 
or improve (Lorenz et al., 2017; Otkin et al., 2013; https://www.drought.gov/) and USDM classifications up to 
12 weeks in advance (Brust et al., 2021; Hao et al., 2016). Statistical models were also capable of forecasting the 
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extreme 2012 U.S. drought several months in advance (AghaKouchak, 2014). Although these statistical drought 
forecasting frameworks can be valuable for informing drought management, these analyses have been conducted 
over coarse resolutions (>10-km) and thus provide limited information for forecasting the spatial heterogeneity 
of drought evolution at finer scales which is valuable for end-users (Samaniego et al., 2019).

Because summer WUS drought is spatially variable at finer resolutions than current forecasting systems with 
typical resolutions >10-km, and has close relationships with food security and wildfire in the WUS, it is imper-
ative to develop seasonal drought forecasting systems at high spatial resolutions (e.g., <5-km; Samaniego 
et  al.,  2019). This study uses high resolution (4-km) observation-based (whenever available) spatially and 
temporally continuous hydroclimate data to develop statistical models for predicting summer meteorological and 
agricultural drought at a higher spatial resolution than previous U.S. drought forecasting analyses and existing 
products (AghaKouchak, 2014; Brust et al., 2021; Hao et al., 2016). Importantly, we quantify the predictability of 
drought at this higher spatial resolution which is akin to nowadays convection-permitting modeling efforts (Chen 
et al., 2020; Liu et al., 2017; Prein et al., 2015). In this study, we evaluate the ability of statistical models to provide 
summer drought forecasts across the WUS on a 4-km grid at 1-, 2-, and 3-month lead times. This analysis also 
assesses the relative importance for a suite of pre-summer drought predictors and provides insights  relating the 
spatial heterogeneity of drought predictability to drought persistence characteristics. The results of this research 
are intended to inform development of drought forecasting systems that leverage high-resolution (≤4-km) hydro-
meteorological observations and simulations.

2. Study Domain and Methods
2.1. Study Domain

The WUS domain considered in this study is comprised of the five western regions from the National Integrated 
Drought Information System (NIDIS) drought early warning system (DEWS) (https://www.drought.gov/dews)—
Pacific Northwest, California-Nevada, Missouri River Basin, Intermountain West, and Southern Plains regions—
that are north of 31°N latitude and west of 96°W longitude. This domain is spatially heterogenous, including a 
spectrum of arid to wet regions, deserts to forests, large irrigated agricultural areas, and snow-dominated moun-
tains. The domain's hydrologic cycle is temporally variable, with distinct wet and dry seasons, particularly in 
the California-Nevada region. This domain is prone to crippling drought events, including the contemporary 
WUS megadrought (Williams et al., 2020, 2022). Droughts in the WUS can take many different forms includ-
ing metrological, agricultural, hydrological, socioeconomic and snow drought (Huning & AghaKouchak, 2020; 
Littell et  al., 2016; Livneh & Hoerling, 2016; Luo & Wood, 2007; Ryu et al., 2010; Westerling et al., 2006; 
Wlostowski et al., 2022). In this study we focus on meteorological and agricultural drought given their established 
relationships with wildfire, water security and food security in this domain as well as persistence of drought 
indices related to these categories (Abatzoglou & Kolden, 2013; Lakshmi et al., 2004; Littell et al., 2009; Lobell 
et al., 2013, 2014; Scanlon et al., 2012).

2.2. Seasonal Drought Forecasting Framework

The proposed drought forecasting framework (Figure 1) predicts seasonally averaged meteorological and agri-
cultural drought indices (PDSI and soil moisture percentile, respectively) during summer months (June–August) 
at 1-, 2-, and 3-month lead times. PDSI and soil moisture percentiles are widely used drought indices in research 
applications and by the operational USDM because of their interpretable representation of land surface and mete-
orological drought conditions as spatiotemporally continuous fields (Abatzoglou & Kolden, 2013; Dai, 2011; 
T. W. Ford & Quiring, 2019; Kumar et al., 2014; Luo & Wood, 2007; Palmer, 1965; Shukla et al., 2011). PDSI 
is a commonly used meteorological drought index. It implicitly accounts for soil moisture conditions making it 
a less explicit representation of on-going meteorological conditions relative to other indices (e.g., SPI; T. Ford 
& Labosier, 2014), but results in relatively longer persistence making it more predictable by statistical models 
(Dai, 2011; Lakshmi et al., 2004; Szép et al., 2005). Figure S1 in Supporting Information S1 shows moderate 
correlations between summer PDSI and soil moisture percentiles across the western U.S (mean r = 0.63; inter-
quartile range (IQR) = 0.57–0.74) indicating these indices are related but mostly independent.

The forecasting framework used herein adopts generalized additive models (GAMs; see Section 2.3 for details) 
using climate predictors (Table 2) averaged across winter and spring months of the same water year. The 1-month 
lead time forecasts use predictors averaged from November to April so predictions can be made by the end of 
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April. The 2-month lead time forecasts use predictors averaged from November-March so predictions can be 
made by the end of March. The 3-month lead time forecasts use predictors averaged from November to February 
so predictions can be made by the end of February. Preliminary tests were conducted to compare GAMs using 
predictors averaged beginning in November versus predictors averaged over the two most recent months available 
for the forecast (e.g., 1-month lead time forecasts using predictors averaged over March–April). This preliminary 
analysis concluded that predictions tend to be more accurate in the former case, using predictors  starting in 
November. One reason for this is that accumulated drought conditions from winter through spring, rather than just 
spring, tend to provide a stronger land surface moisture memory that modulates summer drought conditions. This 
is supported by PDSI and soil moisture percentiles averaged over November–April tending to have higher correla-
tions with summer (JJA) drought indices, relative to JJA comparisons with MA (March–April), FMA (February–
April) and NDJ (November–January) averaged drought indices (Figure S2 in Supporting Information S1).

2.3. Generalized Additive Models (GAMs)

All models in this study are trained or evaluated over a 39-year period (1982–2020) when climate and drought 
data are available (Table  2). We employ the widely used generalized additive models (GAMs) (Hastie & 
Tibshirani, 1986) using a Gaussian distribution to predict metrological and agricultural summer drought with 
pre-summer climate and drought conditions on 4-km grids across the WUS. GAMs are trained in the statistical 
software R (R Core Team, 2020) using the mgcv package (Wood, 2011). GAMs are logistic regression models, 
similar to normal linear regression models, but replace the linear form of 𝐴𝐴

∑

𝛽𝛽𝑗𝑗𝑋𝑋𝑗𝑗 with a sum of nonlinear smooth 
functions 𝐴𝐴

∑

𝑠𝑠𝑗𝑗(𝑋𝑋𝑗𝑗) . Initial testing was performed using a more complex machine learning algorithm (Artificial 
Neural Networks; ANNs); however, ANNs were found to be too computationally expensive to comprehensively 
train across the domain (comprised of 2,57,216 4-km pixels), which is not suitable for potential operation appli-
cations. Thus, this study uses GAMs for prediction and analyses due to their success in previous drought and fire 
prediction research (Abolafia-Rosenzweig et al., 2022a, 2022b; Davenport et al., 2015) and their high computa-
tional efficiency which is essential for operational systems.

Figure 1. Drought forecasting framework for the three lead times considered in this study. Predictors (Table 2) are temporally averaged during pre-summer months 
from November through April, March and February for 1-, 2-, and 3-month lead time forecasts, respectively. Statistical models predict summer drought indices 
(averaged from June through August). The Palmer Drought Severity Index is used to quantify the severity of meteorological drought and soil moisture percentiles are 
used to quantify the severity of agricultural drought.
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Climate predictors are pre-treated with a principal component analysis (PCA) to remove linear correlations 
among each predictor set (Dorman et al., 2013). For GAMs using less than five predictors, all PCs are used as 
predictors. For GAMs using five or more predictors, the first four PCs are used as predictors, which explain an 
average of 93% of the variance of all considered PCs. We limit the number of predictors to four to reduce model 
overfitting while allowing the large majority of climate predictor information to be explained by PC model inputs. 
GAMs used in this study can be written as:

𝑔𝑔(𝐸𝐸(drought index)) = 𝑠𝑠(PC1) + ... + 𝑠𝑠(PC𝑛𝑛) (1)

where g(·) is a Gaussian link function, E(drought index) is the expected value of a drought index given the set of 
predictors, s(·) is a nonlinear smooth function of climate predictors, PCi is the ith principal component for a set 
of climate predictors, and n is the number of climate predictors used in each GAM. Hence in this study, n never 
exceeds four. Drought indices predicted in this analysis are soil moisture percentiles (for agricultural drought) and 
PDSI (for meteorological drought). We generate an ensemble of GAMs by using unique combinations of predic-
tors to ensure that results are insensitive to model-specific characteristics. Additionally, the ensemble of GAMs 
allows for probabilistic drought forecasting (AghaKouchak, 2014; Hao et  al.,  2014). Twenty best-performing 
ensemble members (evaluated based on all unique combinations of pre-summer predictors described in Table 2; 
totally 511 or 1,023 ensemble members tested for non-snowy and snowy pixels, respectively) are chosen based 
on a minimized Generalized Cross Validation (GCV) score. GCV is used for smoothness selection in the mgcv 
package where smoothing parameters are chosen to minimize prediction error. Ensembles chosen on the basis of 
GCV slightly outperforms ensembles chosen on the basis of the Akaike information criterion (AIC) (Table S1 in 
Supporting Information S1) so we exclusively consider ensembles chosen on the basis of GCV in this study. Each 
pixel is modeled independent of surrounding pixels, thus ensembles are trained and evaluated at each 4-km pixel. 
GAM simulations of soil moisture percentiles are post-processed to maintain the soil moisture percentile space, 
constrained between 0 and 1, using the following Equation 2:

soil moisture percentiles =
SMrank − min(SMrank)

max(SMrank) − min(SMrank)
 (2)

where SMrank is the original 39-value time series as ranks.

2.4. Model Evaluation

Because GAMs are prone to overfitting, we exclusively evaluate model performance using out-of-bag compari-
sons (i.e., leave-one-out cross validations and retroactive forecasting) as done in previous evaluations of drought 
predictability (Bachmair et al., 2017; Davenport et al., 2015; Hao, Xia, et al., 2017). In leave-one-year-out cross 
validations, models are trained with data from all years except the target predicted year. Predictions are made 
for each year in the study period following this procedure resulting in a complete out-of-bag predicted summer 
drought time series. Retroactive forecasting mimics an operational forecasting system where models are trained 
with records from years prior to a target year. Retroactive forecasts in this analysis were made at 1-month lead times 
from 2010 to 2020 to support the leave-one-year-out cross validation. We assess the ability of GAMs to predict 
summer drought using three evaluation metrics: drought prediction accuracy (A), probability of detection (POD) 
and Pearson's correlation coefficient (r) as done in previous drought-related studies (Bhardwaj & Mishra, 2021; 
Fankhauser et al., 2022; T. W. Ford & Quiring, 2019; Hao & AghaKouchak, 2014; Zhu et al., 2016). Evaluation 
metrics compare GAM ensemble means with monitored drought. A represents the fraction of total predictions 
that are correct, ranging from 0 to 1, with 1 being a perfect score:

𝐴𝐴 =
hits + correct negatives

total
 (3)

POD quantifies the fraction of monitored droughts (Section 3) that are correctly predicted as drought by GAMs, 
ranging from 0 to 1, with 1 being a perfect score:

POD =
hits

hits + misses
 (4)

Hits represent summers when drought (D1–D4) was monitored and correctly predicted by GAMs. Correct nega-
tives represent summers when abnormally dry (D0) to wet conditions are monitored and correctly predicted. Total 
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is the total number of summers evaluated (1982 through 2020 = 39 summers). Misses represent summers when 
drought is monitored but GAMs predict abnormally dry to wet conditions. The Pearson correlation (r) coefficient 
(Pearson & Henrici, 1896), ranging from −1 to 1, is widely used to quantify linear relationships between two 
variables, and thus serves as a well-known benchmark for performance:

𝑟𝑟 =
∑total

𝑡𝑡=1

(

𝑀𝑀𝑡𝑡 −𝑀𝑀

)(

𝑃𝑃𝑡𝑡 − 𝑃𝑃

)

√

total
∑

𝑡𝑡=1

(

𝑀𝑀𝑡𝑡 −𝑀𝑀

)2(

𝑃𝑃𝑡𝑡 − 𝑃𝑃

)2
 (5)

where Mt and Pt represent monitored and GAM predicted drought indices at timestep t, respectively. 𝐴𝐴 𝑴𝑴  and 𝐴𝐴 𝑷𝑷  
represent the time series mean of monitored and GAM predicted drought indices, respectively. For calculation 
of the A and POD metrics, droughts are considered as a binary event that occurs when drought indices fall into 
the USDM moderate to exceptional drought classification range (D1–D4) (Svoboda et al., 2002; Table 1). Statis-
tical significance of A and POD metrics are computed from nonparametric bootstrap hypothesis tests, based on 
comparisons of random samples with monitored drought conditions at 10,000 randomly selected pixels.

Probabilistic drought forecasts can improve drought early warning systems (Hao et al., 2014). In this study, the 
forecasted drought probability is computed as the fraction of ensemble members that predict a drought event 
based on a specified threshold. We evaluate the ability of our ensemble modeling framework to provide useful 

Table 1 
United State Drought Monitor (USDM) Drought Classifications for PDSI and Soil Moisture Percentiles That Are Used in 
This Study (Svoboda et al., 2002)

Category Description Palmer drought severity index (PDSI) Soil moisture model (percentiles)

D0 Abnormally dry −1 ≥ PDSI > −2 30% ≥ SM percentile > 20%

D1 Moderate drought −2 ≥ PDSI > −3 20% ≥ SM percentile > 10%

D2 Severe drought −3 ≥ PDSI > −4 10% ≥ SM percentile > 5%

D3 Extreme drought −4 ≥ PDSI > −5 5% ≥ SM percentile > 3%

D4 Exceptional drought −5 ≥ PDSI 3% ≥ SM percentile

Table 2 
Data Sets for Climate Predictors and Drought Indices

Variables Data sources Spatial resolution
Temporal 
resolution

Temporal 
record Reference/location

Precipitation, temperature, 
vapor pressure deficit 
(VPD)

Parameter-elevation Relationships on 
Independent Slopes Model (PRISM)

4-km Daily 1981—present Daly et al. (2008, 2015) 
https://prism.oregonstate.

edu/recent/

Palmer Drought Severity 
Index (PDSI)

Derived from PRISM precipitation and 
temperature

4-km Monthly 1981—present https://github.com/JonKing93/
pdsi/releases/tag/v1.0.0

Evapotranspiration (ET), 
potential ET (PET) 
and soil moisture

NCAR/USGS 4-km long-term CONUS 
hydroclimate reanalysis data set 
(CONUS404)

4-km Hourly 1980–2021 Rasmussen et al. (2023)

Snow water equivalent 
(SWE)

Daily snow water equivalent and snow depth 
from assimilated in situ and modeled data 
over the Conterminous U.S., Version 1 
(UA-SWE)

4-km Daily 1981–2020 Broxton et al. (2019) Zeng 
et al. (2018) https://nsidc.

org/data/nsidc-0719/
versions/1

Atlantic Multidecadal 
Oscillation Index 
(AMO)

NOAA Physical Sciences Laboratory AMO 
unsmoothed timeseries

North Atlantic (0°N 
−70°N)

Monthly 1948—present Enfield et al. (2001) https://
psl.noaa.gov/data/
timeseries/AMO/

Pacific Decadal 
Oscillation (PDO)

NCEI PDO North Pacific (N. of 
20°N)

Monthly 1854—present Mantua (1999) https://
www.ncdc.noaa.gov/
teleconnections/pdo/

Note. All 10 variables in this table are used as predictors.

https://prism.oregonstate.edu/recent/
https://prism.oregonstate.edu/recent/
https://github.com/JonKing93/pdsi/releases/tag/v1.0.0
https://github.com/JonKing93/pdsi/releases/tag/v1.0.0
https://nsidc.org/data/nsidc-0719/versions/1
https://nsidc.org/data/nsidc-0719/versions/1
https://nsidc.org/data/nsidc-0719/versions/1
https://psl.noaa.gov/data/timeseries/AMO/
https://psl.noaa.gov/data/timeseries/AMO/
https://psl.noaa.gov/data/timeseries/AMO/
https://www.ncdc.noaa.gov/teleconnections/pdo/
https://www.ncdc.noaa.gov/teleconnections/pdo/
https://www.ncdc.noaa.gov/teleconnections/pdo/
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probabilistic drought forecasts through comparisons of probabilistic drought maps from GAMs with monitored 
agricultural and meteorological drought maps for several significant summer drought events in 2007, 2011, 2012, 
and 2014. These evaluations consider drought thresholds of D1 and D3.

2.5. Predictor Importance

Leave-one-column-out (LOCO) analyses are used to quantify relative predictors' importance at each pixel 
(Abolafia-Rosenzweig et al., 2022b; Kuhn-Régnier et al., 2021). The LOCO importance is measured by repeat-
edly training GAMs, each time without one particular predictor, and computing the ratio of a skill metric (Taylor 
Skill Score (S); Taylor, 2001) for the re-trained model to the original model including all of its original predic-
tors. Ratios less than unity indicate degraded performance from removing a predictor, (i.e., reduced S), where S 
summarizes root mean square error (RMSE), ratio of variance and r as a single metric.

3. Data Used for Climate Predictors and Drought Indices
The climate predictors (Table  2) selected in this study are based on previous research that quantified and 
discussed relationships between these factors with drought in the U.S. (AghaKouchak, 2014; Brust et al., 2021; 
Hao et al., 2018; Lakshmi et al., 2004; McCabe et al., 2004; Otkin et al., 2018; Rajagopalan et al., 2000; Ryu 
et al., 2010). Data sources for these selected climate predictors and drought conditions come from long-term 
spatially and temporally continuous high-resolution data products, which are widely used and observation-based 
(whenever available) (Table  2). Specifically, precipitation, temperature and vapor pressure deficit (VPD) are 
obtained from the daily 4-km observation-based PRISM (Parameter-elevation Relationships on Independent 
Slopes Model) data set (Daly et al., 2008, 2015). PDSI is derived from PRISM precipitation and temperature, and 
snow water equivalent (SWE) is from the 4-km observation-based University of Arizona (UA) data set (Broxton 
et al., 2019; Zeng et al., 2018). Soil moisture, evapotranspiration (ET) and potential ET (PET) are from a new 
NCAR/USGS 4-km 40-year-plus (1980–2021) CONUS hydroclimate reanalysis data set (hereafter CONUS404; 
Rasmussen et al., 2023). Atlantic Multidecadal Oscillation (AMO) is published by NOAA's Physical Sciences 
Laboratory (Enfield et al., 2001), and Pacific Decadal Oscillation is published by NCEI (Mantua, 1999).

PDSI and root-zone (top 1  m) soil moisture percentiles are used to quantify meteorological and agricultural 
drought conditions, respectively. We use PRISM precipitation and temperature data to compute monitored 
PDSI because PRISM is an observationally based data set which is widely used and has been formally validated 
(Abatzoglou, 2013; Buban et al., 2020; Currier et al., 2017; Daly et al., 2008, 2015). PDSI is calculated using 
the pdsi MatLab package (King, 2022; https://github.com/JonKing93/pdsi/releases/tag/v1.0.0). Given the lack 
of long-term spatiotemporally continuous observational data products for soil moisture, evapotranspiration (ET) 
and potential ET (PET) at a high resolution (≤4-km) during the period of this study (1982–2020), we use the 
CONUS404 data product for these three variables. The CONUS404 data product is an extension of a widely 
used convection-permitting Weather Research & Forecasting (WRF) CONUS climate modeling product with 
improved model physics and configurations (Barlage et al., 2021; C. He et al., 2021; Liu et al., 2017). Many stud-
ies have shown that the convection-permitting WRF climate modeling product adequately captures key observed 
meteorological fields (e.g., precipitation, temperature, snowpack, and land surface states) (C. He et al., 2019; 
Ikeda et al., 2021; Liu et al., 2017; Scaff et al., 2020). In this study, we further evaluate the CONUS404 soil 
moisture, PET and ET data against in situ observations and satellite retrievals (see below for details) before using 
them in the GAMs model training and forecasting.

Figure S3 in Supporting Information S1 and Figure 2 present comparisons of CONUS404 soil moisture percen-
tiles with 509 in situ monitoring stations across the WUS and operationally used drought monitoring products, 
respectively. CONUS404 drought predictability is benchmarked against widely used LSMs from Phase 2 of the 
North American Land Data Assimilation System (NLDAS-2; Xia, Ek, et al., 2012, Xia, Mitchell, et al., 2012) 
that is also currently used for operationally monitoring U.S. drought. In situ soil moisture data from 1997 to 
2019 and nearest-neighbor matched NLDAS-2 Noah soil moisture data are from T. W. Ford and Quiring (2019). 
CONUS404 has similar agreement with in situ observations relative to the NLDAS-2 Noah LSM, with a mean 
prediction accuracy (A) of 0.65–0.75 and a mean POD of 0.8–0.9 (Figure S3 in Supporting Information S1). 
Furthermore, CONUS404 monitored agricultural drought conditions during four major summer drought events 
in the study record (2007, 2011, 2012, and 2014) well capture operationally monitored NLDAS-2 ensemble mean 

https://github.com/JonKing93/pdsi/releases/tag/v1.0.0
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drought conditions (Figure 2). Similarly, PRISM-derived PDSI favorably compares to operationally monitored 
PDSI conditions from CPC and NCEI archives (https://www.cpc.ncep.noaa.gov/products/monitoring_and_data/
drought.shtml; https://www.ncdc.noaa.gov/temp-and-precip/drought/historical-palmers/maps). CONUS404 
agricultural drought index and PRISM PDSI also compare favorably with the integrated drought maps and  

Figure 2. Monitored drought conditions during four major summer drought events in July of 2007, 2011, 2012. 4-km drought monitoring products for meteorological 
drought (Palmer Drought Severity Index: PDSI) and agricultural drought (soil moisture percentiles) used in this study are outlined in dashed green rectangles. Drought 
monitoring products used in this study (PRISM and CONUS404) show mostly consistent spatial distributions of drought conditions during these drought events relative 
to operationally used drought monitoring products that use corresponding drought indices as well as the integrated drought index represented by the USDM. NLDAS-2 
agricultural drought is based on the multi-model (VIC, Noah and Mosaic) ensemble mean. CPC and USDM weekly drought maps are from the last week of July from 
respective years.

https://www.cpc.ncep.noaa.gov/products/monitoring_and_data/drought.shtml
https://www.cpc.ncep.noaa.gov/products/monitoring_and_data/drought.shtml
https://www.ncdc.noaa.gov/temp-and-precip/drought/historical-palmers/maps
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characteristics from USDM during these summer drought events (Figure 2). Thus, given the adequate accuracy 
of CONUS404 in simulating soil moisture percentiles and agricultural drought and its high spatial resolution, 
we consider the CONUS404 soil moisture data a valuable agricultural drought monitoring product to use in this 
analysis. The wide operational use and previous evaluations of PRISM combined with Figure 2 further support 
the use of PRISM PDSI as a meteorological drought monitoring product.

We also evaluate CONUS404 ET and PET, which are exclusively used as predictors. CONUS404 ET is obtained 
directly from the CONUS404 outputs and PET is derived from CONUS404 outputs following the Penman-Monteith 
equation (Technical Committee on Standardization of Reference Evapotranspiration, 2005; Yodder et al., 2005). 
CONUS404 ET and PET are compared with the widely used Moderate Resolution Imaging Spectroradiome-
ter (MODIS) MOD16A2 data set (Mu et al., 2013) across the WUS during 2001–2020. CONUS404 ET and 
PET agree with MOD16A2 ET and PET across the WUS (median r = 0.75 and 0.96, respectively; Figure S4 
in Supporting Information S1). Areas of low correlation between CONUS404 and MOD16A2 ET correspond 
with arid areas characterized by heavily water-limited ET (Figure S4 in Supporting Information S1). Overall, 
we consider CONUS404 ET and PET reasonable estimates over most of the western CONUS that can provide 
valuable predictive information in GAMs.

As a pre-processing step to statistical modeling, all variables are re-mapped to the CONUS404 4-km grid 
using bilinear interpolation. Bilinear interpolation is adequate because all data have the same native spatial 
resolution (4-km), excluding the Atlantic Multidecadal Oscillation (AMO) and the Pacific Decadal Oscillation 
(PDO) indices which are not spatially distributed, and thus are considered uniform across the domain. Predic-
tors and drought conditions are first averaged to a monthly time scale, then predictors are temporally averaged 
over pre-summer months and monitored drought indices are averaged over summer months (Figure 1). SWE 
is only used as a predictor of snowy pixels that may be affected by snow processes: pixels that recorded less 
than 10 years of 0 mm pre-summer SWE and at least 1 year of at least 0.1 mm of mean pre-summer SWE. This 
results in 83% of pixels considering SWE as a predictor and 17% pixels not considering SWE as a predictor in 
the study domain.

4. Results
4.1. Evaluating GAM 1-Month Lead Time Predictions

GAMs provide skillful 1-month lead time predictions of meteorological and agricultural summer drought across 
most of the WUS at a 4-km resolution while maintaining accurate representations of the total WUS area effected 
by various drought severities and long-term trends (Figures 3–5). In leave-one-year-out cross validations A, POD 
and r for meteorological drought predictions are statistically significant (p ≤ 0.05) across 93%, 85%, and 100% 
of the domain with median values of 0.90, 0.67, and 0.86, respectively (Figures 3a, 3c, and 3e). For agricultural 
drought predictions, A, POD and r are statistically significant (p ≤ 0.05) across 77%, 94%, and 100% of the 
domain with median values of 0.85, 0.63, and 0.78, respectively (Figures 3b, 3d, and 3f). Retroactive forecasting 
also provides statistically significant skill of drought predictions across the large majority of the western U.S. 
(95% and 89% of the domain for meteorological and agricultural drought, respectively) where median correla-
tions for predicted PDSI and soil moisture percentiles are 0.84 and 0.77, respectively (Figure S5 in Supporting 
Information S1). Median and interquartile ranges (IQR) of evaluation metrics for drought predictions are summa-
rized in Table 3. 39-year linear trends of predicted drought index time series closely match monitored trends with 
high correlations (r = 0.94–0.97) and acceptable biases (−18%–3%) across all pixels in the WUS (Figure 4). 
Spatially averaged monitored and predicted drought indices each show negative trends for PDSI (−0.0214/year 
and −0.0207/year) and soil moisture percentiles (−0.0028/year and −0.0024/year, respectively), indicating that 
GAMs accurately captured the direction of broadscale drought intensification from 1982 to 2020.

Predicted drought area (D1 or more severe) has high correlations (0.90–0.98; p ≤ 0.01) and low to moderate biases 
(−23%–0%) with monitored agricultural and meteorological drought area, respectively from leave-one-year-out 
cross validations (Figure 5) and retroactive forecasting analyses (Figure S6 in Supporting Information S1). The 
leave-one-year-out correlation is degraded to 0.82 for meteorological drought area when the threshold is increased 
to extreme drought (D3), and further degraded to 0.68 when only considering exceptional drought (D4). The 
correlation between predicted and monitored agricultural drought is mostly insensitive to drought severity (rang-
ing from 0.89 to 0.92). One reason for this insensitivity for agricultural drought area, compared to the relatively 
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higher sensitivity for meteorological drought area, is that soil moisture percentile predictions are post-processed 
to maintain the known percentile space (Equation 2), whereas predicted PDSI is not post-processed because PDSI 
has temporally and spatially variable ranges. Hence, uncertainties in predicted drought area can be ameliorated 
by understanding and accounting for the observed drought index space. As shown in Text S1 and Figure S13 
of the Supporting Information  S1, converting monitored and predicted PDSI to the percentile space reduces 
GAM-predicted PDSI errors, particularly during abnormally wet or dry (i.e., drought) times and places.

Predicted drought has similar spatial distributions relative to monitored meteorological and agricultural drought 
during noteworthy drought events in both leave-one-year-out (Figure 6) and retroactive forecasting (Figure S7 
in Supporting Information S1) cross validations. Hence, accurate drought area predictions from GAMs shown 

Figure 3. Evaluation metrics for GAM simulated metrological (left) and agricultural (right) drought with 1-month lead times in leave-one-year-out cross validations. 
(a), (b) Spatial maps of the fraction of correct predictions (A from Equation 3) (c), (d) spatial maps of probability of drought detection (POD from Equation 4). (e), (f) 
Spatial maps of correlation (r form Equation 5). The lower bound of color bars is the p = 0.05 significance level.
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Figure 4. (a) Monitored and (b) 1-month lead time predicted linear trends in PDSI. (d) Monitored and (e) 1-month lead time predicted linear trends in soil moisture 
percentiles form 1982–2020. Biases in predicted trends for (c) PDSI and (f) soil moisture percentiles. Correlations between (a), (b) and (d), (e) are 0.97 and 0.94, 
respectively.

Figure 5. Summer drought areal coverage (as fraction of total WUS domain) from drought monitoring data sources and GAM 1-month lead time predictions in 
leave-one-year-out cross validations. (a) Monitored meteorological drought from PRISM PDSI. (b) GAM ensemble mean of predicted meteorological drought. (c) 
Monitored agricultural drought from CONUS404 soil moisture percentiles. (d) GAM ensemble mean of predicted agricultural drought. (e) Comparison of monitored 
and GAM simulated meteorological drought area for various drought thresholds with corresponding r reported for each. (f) Comparison of monitored and GAM 
simulated agricultural drought area for various drought thresholds with corresponding r reported for each.
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in Figure 5 and Figure S6 in Supporting Information S1 correspond with accurate spatial distributions during 
noteworthy drought events. The higher accuracy in the leave-one-year-out 2011 summer drought prediction 
(Figure 6), relative to the retroactive forecast (Figure S7 in Supporting Information S1), emphasizes that using a 
relatively longer statistical model training period can yield more skillful drought predictions, and thus emphasizes 
the importance of maintaining historical drought records.

Table 3 
Evaluation Metrics Comparing GAM Ensemble Mean Leave-One-Year-Out Predictions With Monitored Meteorological 
and Agricultural Drought

Correct 
predictions (A)

Probability of 
detection (POD) Correlation (r)

Percent of 
pixels with 
significant 

A (%)

Percent of 
pixels with 
significant 
POD (%)

Percent of 
pixels with 
significant 

r (%)

Meteorological drought evaluation metrics

 1-month lead time 0.90 [0.85–0.92] 0.67 [0.54–0.79] 0.86 [0.80–0.90] 93 85 100

 2-month lead time 0.87 [0.85–0.92] 0.66 [0.50–0.75] 0.84 [0.78–0.88] 90 82 100

 3-month lead time 0.87 [0.85–0.92] 0.64 [0.50–0.75] 0.83 [0.78–0.87] 89 81 100

Agricultural drought evaluation metrics

 1-month lead time 0.85 [0.85–0.90] 0.63 [0.63–0.75] 0.78 [0.70–0.86] 77 94 100

 2-month lead time 0.85 [0.79–0.90] 0.63 [0.50–0.75] 0.75 [0.67–0.84] 70 91 100

 3-month lead time 0.85 [0.79–0.90] 0.63 [0.50–0.75] 0.75 [0.67–0.83] 70 91 100

Note. Predictions are made with 1-, 2-, and 3-month lead times. Metrics are reported as: median [inter quartile range].

Figure 6. Monitored meteorological and agricultural drought classifications from PRISM and CONUS404 in top rows of (a) and (b), respectively. Predicted 
meteorological and agricultural drought classifications from GAMs in leave-one-year-out cross validations in respective lower rows of (a) and (b). Predictions are made 
with a 1-month lead time.
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During the same four drought events shown in Figure 6 (2007, 2011, 2012, and 2014 summers), Figure 7 compares 
probabilistic drought predictions (using a D1 threshold; see Section 2.2) with monitored drought, revealing that 
GAM ensembles predict relatively high probabilities of drought over areas and times where drought is monitored. 
Specifically, the median and IQR of predicted meteorological drought probability for pixels where drought was 
monitored during these events is 0.80 and 0.55–0.95, respectively; whereas the median and IQR for pixels with no 
meteorological drought monitored is 0.0 and 0.0–0.05, respectively. Similarly, the median and IQR of predicted 
agricultural drought probability for pixels where drought was monitored during these events is significantly 
higher (0.35 and 0.15–0.60, respectively; p < 0.01) than pixels where no drought is monitored (0.0 and 0.0–0.05). 
This result is similar when drought is considered as D3 or more severe (Figure S8 in Supporting Information S1). 
Thus, GAMs are capable of accurately forecasting spatial distributions of major drought events (including excep-
tional drought) at a 1-month lead time.

There is substantial spatial heterogeneity in high resolution drought prediction skill (Figure 3). Summer drought 
predictions tend to be relatively inaccurate along the northern west coast from Northern California through Wash-
ington, the Sierra Nevada, Northern Idaho, Northern Texas and Oklahoma. Some regions where summer drought is 
particularly predictable are Southern California and the Central Valley, agricultural plains of Southern Idaho along 
the Snake River, Nebraskan agricultural plains along the Platte River, and North Dakota and South Dakota along the 
Missouri River. One factor that affects drought predictability is the persistence of drought, where drought predict-
ability is expected to decrease in areas with relatively weak drought persistence (Hao et al., 2018). We quantify 
drought persistence as the correlation between mean pre-summer and mean summer drought indices (Figures 8a 
and 8b). Drought persistence maps show similar features as GAM skill, particularly for r (Figures 3e and 3f), where 
regions with low drought persistence generally have low prediction skill. Indeed, when evaluation metrics are binned 
by drought persistence, there is a tendency for areas with greater drought persistence to correspond with better 
skill scores (Figures 8d–8f). For instance, there are high correlations between drought persistence (i.e., Figures 8a 
and 8b) and GAM leave-one-year-out r (i.e., Figures 3e and 3f), with correlations of 0.82 and 0.73 for PDSI and soil 
moisture percentiles, respectively (p < 0.01). Many factors modulate land surface moisture memory (i.e., drought 
persistence) (Koster & Suarez, 2001; Mahanama & Koster, 2003), with a noticeable influence from precipitation 
(Rahman et al., 2015) where drier areas tend to have greater persistence and more skill (Figure 8). However, there are 
many exceptions to this statement, as indicated by only moderate anti-correlations between mean summer precipita-
tion with drought persistence: −0.40 and −0.39 (p < 0.01) for soil moisture percentiles and PDSI, respectively. One 
such exception is that drought tends to be relatively persistent and predictable along surface water channels in rela-
tively rainy regions (e.g., Nebraska) (Figures 3f and 8b), indicating an important role of land surface characteristics 
in modulating drought persistence and predictability as well. Overall, drought predictability tends to be higher where 
drought is more persistent, which has significant overlap with areas that have relatively dry summers.

4.2. Relative Importance of Predictors

Pre-summer PDSI is the most important predictor for summer PDSI, and pre-summer soil moisture percentile is the 
most important predictor for summer soil moisture percentile (Figure 9), as expected from the key role of drought 
persistence in controlling prediction skill discussed in Section 4.1. Thus, the GAMs used in this study heavily rely 
on the autocorrelation attribute of drought indices. Specifically, pre-summer PDSI is the most important predictor 
for summer PDSI over 97% of the WUS (Figures 9a and 9e), and pre-summer soil moisture percentile is the most 
important predictor for summer soil moisture percentile over 48% of the WUS (Figures 9c and 9g). Pre-summer 
PDSI is also an important predictor of summer soil moisture percentile, showing the greatest importance over 
16% of the WUS. Given the dominant importance of the pre-summer drought indices, we also present the second 
most important predictors for GAMs over the domain (Figures 9b, 9d, 9f, and 9h). This reveals that meteorological 
drought predictability in the WUS also relies heavily on pre-summer VPD, temperature, soil moisture percentiles, 
PET, ET and precipitation, which vary by regions. These are the second most important predictor for summer PDSI 
over at least 11% of the WUS, whereas the rest of predictors are the second most important predictor over less than 
6.5% of the WUS. Nine of the 10 predictors are the second most important for soil moisture percentile predicta-
bility over 8%–16% of the WUS, whereas SWE is the second most important predictor over only 3% of the WUS.

However, SWE is an important predictor for PDSI in North Dakota (Figure 9b) and soil moisture percentiles in 
the Sierra Nevada (Figure 9c), consistent with previous research showing connections between pre-summer snow 
conditions with summer hydrology and drought in these areas (Dierauer et al., 2019; M. He et al., 2016; Quiring 
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& Kluver, 2009; Shin et al., 2020). The importance of SWE as a predictor of agricultural drought in the Sierra Nevada 
is also supported by Figure S2 in Supporting Information S1 which reveals soil moisture percentiles averaged over 
early winter months (November–January) have higher correlations with summer (JJA) soil moisture percentiles, rela-
tive to soil moisture percentiles averaged over late-winter and spring months (February–April) in this area.

Figure 7. Monitored meteorological and agricultural binary drought (D1–D4) from PRISM and CONUS404 in top rows of (a) and (b), respectively. Probabilistic 
predictions of meteorological and agricultural drought probability from GAMs in leave-one-year-out cross validations in respective second rows. Boxplots of predicted 
(c) meteorological and (d) agricultural drought probability grouped by pixels that are monitored to be in drought and no drought. Predictions are made with a 1-month 
lead time. For boxplots, central marks indicate the median, and the bottom and top edges of boxes indicate the 25th and 75th percentiles, respectively. Whisker lengths 
are equivalent to the interquartile range. Outliers are plotted as black dots.



Water Resources Research

ABOLAFIA-ROSENZWEIG ET AL.

10.1029/2022WR033734

15 of 24

4.3. Lead Time Sensitivity: Evaluating 2- and 3-Month Lead Time Predictions

2- and 3-month lead time predictions of meteorological and agricultural summer drought are skillful across 
most of the WUS at a 4-km resolution while maintaining accurate representations of long-term trends and 
the total WUS area affected by various drought classifications (Table 3; Figures 10–13; Figures S9 and 10 in 
Supporting Information S1). For instance, 2- and 3-month lead time drought predictions have significant skill 
(p ≤ 0.05) across 81%–100% and 70%–100% of the WUS for meteorological and agricultural drought, respec-
tively (Figures 10 and 11). A, POD and r from 1-, 2-, and 3-month lead time predictions are similar (Table 3). 
2- and 3-month lead time predictions of meteorological drought provide median A, POD, and r values of at least 
0.87, 0.64, and 0.83, respectively. 2- and 3-month lead time predictions of agricultural drought provide median A, 
POD, and r values of at least 0.85, 0.63, and 0.75, respectively. 2- and 3-month lead time predictions maintain the 
spatial variability of monitored summer agricultural and meteorological drought trends (r = 0.94–0.96; Figures 
S9 and S10 in Supporting Information S1). GAM predicted drought area (D1 or more severe) has high correla-
tions (0.84–0.89; p ≤ 0.01) and low to moderate biases (0%–26%) with monitored agricultural and meteorological 

Figure 8. Summer drought tends to be more predictable over areas where drought indices are more persistent and drought tends to be more persistent over areas with 
relatively low summer precipitation. (a) Correlation between pre-summer (November–April mean) PDSI and summer (June–August) PDSI. (b) Same as (a), but for soil 
moisture percentiles instead of PDSI. (c) Mean summer precipitation. (d) The A metric from leave-one-year-out cross validations for GAMs predicting PDSI (top) and 
soil moisture percentiles (bottom) uniformly binned by persistence of respective drought indices, where persistence is shown spatially in (a) and (b), respectively. (e) 
Same as (d) but for POD. (f) Same as (d) but for r. (g) Persistence of PDSI (top) and soil moisture percentiles (bottom) uniformly binned by mean summer precipitation. 
(h) r from leave-one-year-out cross validations for GAMs predicting PDSI (top) and soil moisture percentiles (bottom) binned by mean summer precipitation. 
Persistence bins are divided into equal-length terciles such that: low persistence (<0.44), mid. persistence (0.44–0.73), high persistence (>0.73) for ag. drought and low 
persistence (<0.80), mid. persistence (0.80–0.86), high persistence (>0.86) for met. drought. For boxplots, central marks indicate the median, and the bottom and top 
edges of boxes indicate the 25th and 75th percentiles, respectively. Whisker lengths are equivalent to the interquartile range. Outliers are plotted as red dots.
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drought area (Figure 12). This correlation is degraded to 0.75 for meteorological drought area when the threshold 
is increased to extreme drought (D3), and further degraded to 0.63–0.65 when only considering exceptional 
drought (D4). The correlation between predicted and monitored agricultural drought is mostly insensitive to 
drought classification (ranging from 0.83 to 0.86). The high correlation between 3-month lead time drought area 
predictions (using winter predictors) with monitored summer drought area indicates the majority of the summer 
drought area's interannual variability can be explained by winter conditions alone. Predicted summer drought 
from 2- and 3-month lead time simulations show similar spatial distributions relative to monitored meteorological 
and agricultural drought during the 2007, 2011, 2012, and 2014 significant summer drought events (Figure 13). 
Thus, our GAM forecasting system can provide useful 2- and 3-month lead time predictions of summer drought 
at a high resolution.

The relative importance of predictors from 1-month lead time predictions are similar for models providing 2- and 
3-month lead time predictions (Figures S11 and S12 in Supporting Information S1). For 2- and 3-month lead 
time predictions, pre-summer PDSI is the most important predictor for summer PDSI over 97% of the WUS 

Figure 9. Relative importance of predictors for PDSI and soil moisture percentiles based on leave-one-column-out analyses from 1-month lead time models. (a) Map of 
the most important predictor for PDSI. (b) Map of the second most important predictor for PDSI. (c) Map of the most important predictor for soil moisture percentiles. 
(d) Map of the second most important predictor for soil moisture percentiles. (e) Number of pixels each predictor of PDSI is the most important. (f) Number of pixels 
each predictor of PDSI is the second most important. (g) Number of pixels each predictor of soil moisture percentile is the most important. (h) Number of pixels each 
predictor of soil moisture percentile is the second most important.
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(Figures S11e and S12e in Supporting Information S1), and pre-summer soil moisture percentile is the most 
important predictor for summer soil moisture percentile over 52%–54% of the WUS (Figures S11g and S12g in 
Supporting Information S1), because of the dominant role of drought persistence. Pre-summer PDSI is also an 
important predictor of summer soil moisture at 2- and 3-month lead times, showing the greatest importance over 
21% and 22% of the WUS, respectively. Meteorological drought predictability in the WUS also relies heavily 
on pre-summer soil moisture percentiles, temperature, VPD, PET, ET, and precipitation (Figures S11b, S11f, 
S12b, and S12f in Supporting Information S1). Pre-summer PDSI is most frequently (17%–18%) the second 
most important predictor for soil moisture percentiles, with eight of the remaining predictors being the second 
most important over 8%–12% of the WUS (Figures S11d, S11h, S12d, and S12h in Supporting Information S1).

Figure 10. Evaluation metrics for GAM simulated metrological (left) and agricultural (right) drought with 2-month lead times in leave-one-year-out cross validations. 
(a), (b) Spatial maps of the fraction of correct predictions (A from Equation 3) (c), (d) spatial maps of probability of drought detection (POD from Equation 4). (e), (f) 
Spatial maps of correlation (r form Equation 5). The lower bound of color bars is the p = 0.05 significance level.
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5. Discussion
Stakeholders in agriculture, energy, wildfire, and water resources sectors require accurate and detailed local 
drought seasonal forecasts so important proactive decision-making can be made based on the best available data 
(Abatzoglou et al., 2017). For instance, drought data informs crop water requirements, and in turn surface water 
and groundwater demands and water allocations for irrigation organizations that play a critical role in water distri-
bution and groundwater management decision making, and long-range weather forecasts have been identified 
among the most commonly used data sources for long-range planning and management by irrigation organiza-
tions (Wallander et al., 2022). Wildland fire managers have an increasing need for drought data to be incorporated 

Figure 11. Evaluation metrics for GAM simulated metrological (left) and agricultural (right) drought with 3-month lead times in leave-one-year-out cross validations. 
(a), (b) Spatial maps of the fraction of correct predictions (A from Equation 3) (c), (d) spatial maps of probability of drought detection (POD from Equation 4). (e), (f) 
Spatial maps of correlation (r form Equation 5). The lower bound of color bars is the p = 0.05 significance level.
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to fire-related forecasts to improve firefighter safety and response, public health safety, and long-term fuel treat-
ment strategies. In response, improving S2S forecasting of drought and fire hazard is a priority of NOAA's 
Weather Program Office. There are multiple validated observational and model-based hydrometeolrogical data 
sets at higher resolutions (e.g., ≤4-km) than drought forecasting analyses in the WUS (Daly et al., 2008, 2015; 
Liu et al., 2017), motivating the research conducted in this analysis which leverages data sets with a 4-km spatial 
resolution to predict drought at S2S scales while maintaining the native spatial resolution of these data.

This study finds widely used meteorological and agricultural drought indices are predictable at a 4-km resolution 
at S2S time-scales across most of the WUS using a relatively simple statistical modeling methodology. However, 
drought predictability in this study is heavily degraded in areas where drought has low persistence. Future analyses 
may attempt to overcome this shortcoming by using spatially variable pre-summer temporal averaging to maximize 
the correlation with pre-summer and summer drought (i.e., Figure S2 in Supporting Information S1). Furthermore, 
future analyses may consider using other predictors that were not considered in this study, such as the Oceanic Niño 
Index which tracks the ocean part of the El Niño-southern Oscillation climate pattern which has important relation-
ships with drought in the WUS (Mo & Schemm, 2008), more detailed snow indices (e.g., peak SWE, ablation rate, 
day of snow disappearance, snow drought, etc.) (M. He et al., 2016; Huning & AghaKouchak, 2020), S2S forecasts 
of North American Monsoon rainfall (Prein et al., 2022), and other information from long-range dynamical mode-
ling forecasts using combined dynamical and statistical approaches (e.g., Yan et al., 2017). Future analyses that use 
statistical models to forecast drought should also explicitly account for the ranges of drought indices (as discussed 
in Section 4.1 and Text S1 in Supporting Information S1). Another limitation is that although the WUS drought 
predictions made in this study are at higher-resolutions than previous research, there is still a great deal of spatial 

Figure 12. Summer areal drought coverage (as fraction of total WUS domain) from drought monitoring data sources and 
GAM predictions in leave-one-year-out cross validations. (a), (b) Comparison of monitored and GAM 2-month lead time 
predicted meteorological and agricultural drought area for various drought thresholds with corresponding r reported for each. 
(c), (d) Comparison of monitored and GAM 3-month lead time predicted meteorological and agricultural drought area for 
various drought thresholds with corresponding r reported for each.
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heterogeneity of drought at even higher resolutions (e.g., sub-kilometer scales) (Vergopolan et al., 2022). The meth-
odology used in this analysis may be applicable at the sub-kilometer scale as more spatially and temporally contin-
uous data sets become available at higher resolutions (e.g., Anderson et al., 2012; Burek et al., 2020; Vergopolan 
et al., 2021).

6. Conclusions
In this study we evaluated the ability of computationally efficient statistical models to forecast summer drought 
across the western U.S. from 1982 to 2020 at a much higher spatial resolution (4-km) than previous drought 
forecasting efforts. Summer drought predictors are pre-summer drought and climate conditions from long-term 
spatially and temporally continuous 4-km observation-based (whenever available) or reanalysis data sets. Our 
statistical forecasting models provide skillful predictions of meteorological and agricultural drought across the 

Figure 13. Monitored meteorological and agricultural drought classifications from PRISM and CONUS404 in rows one and four, respectively. 2-month lead time 
predicted meteorological and agricultural drought classifications from GAMs in leave-one-year-out cross validations in rows two and five, respectively. 3-month lead 
time predicted meteorological and agricultural drought classifications from GAMs in leave-one-year-out cross validations in rows three and six, respectively.
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western U.S. at 1- to 3-month lead times, and maintain accurate spatial and temporal variability of summer 
drought area. Our drought predictions provide statistically significant (p ≤ 0.05) skill scores across 70%–100% 
of the domain, while explaining at least 71% of the monitored interannual variability of drought area for D1 or 
more severe events (USDM drought categorization). Our predictions provide similar drought spatial distribu-
tions relative to monitored drought conditions during four representative major summer drought events in 2007, 
2011, 2012, and 2014. Drought predictability is spatially variable, with drought tending to be more predictable 
in drier areas where drought is more persistent. As expected, pre-summer PDSI is the most important predic-
tor for summer PDSI (representing meteorological drought condition), and pre-summer soil moisture percentile 
is the most important predictor for summer soil moisture percentile (representing agricultural drought condi-
tion), emphasizing that the statistical models used in this study rely heavily on the autocorrelation attribute 
of drought indices/conditions, consistent with previous studies. This work presents a new capability to predict 
seasonal drought conditions at a high spatial resolution across the western U.S. Future research should expand 
on this study by evaluating drought forecasting at higher temporal resolutions (e.g., monthly or weekly instead of 
seasonal scale) while maintaining a high spatial resolution. This study is intended to support the development of 
future operational drought early warning systems that provide high resolution drought forecasts.

Data Availability Statement
The data that support the findings of this study are openly available: https://data.mendeley.com/datasets/gw7c3y-
jhyp/2 (Abolafia-Rosenzweig et al., 2022c). The CONUS 404 data are archived and accessible on the United 
States Geological Survey Black Pearl Tape system and on the NCAR super-computer Campaign storage system.
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